3.2.22 \(\int \frac {\cos ^4(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx\) [122]

3.2.22.1 Optimal result
3.2.22.2 Mathematica [A] (verified)
3.2.22.3 Rubi [A] (verified)
3.2.22.4 Maple [A] (verified)
3.2.22.5 Fricas [A] (verification not implemented)
3.2.22.6 Sympy [F(-1)]
3.2.22.7 Maxima [B] (verification not implemented)
3.2.22.8 Giac [A] (verification not implemented)
3.2.22.9 Mupad [F(-1)]

3.2.22.1 Optimal result

Integrand size = 23, antiderivative size = 174 \[ \int \frac {\cos ^4(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \cos (c+d x)}}\right )}{\sqrt {a} d}-\frac {148 \sin (c+d x)}{105 d \sqrt {a+a \cos (c+d x)}}-\frac {2 \cos ^2(c+d x) \sin (c+d x)}{35 d \sqrt {a+a \cos (c+d x)}}+\frac {2 \cos ^3(c+d x) \sin (c+d x)}{7 d \sqrt {a+a \cos (c+d x)}}+\frac {62 \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{105 a d} \]

output
arctanh(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/(a+a*cos(d*x+c))^(1/2))*2^(1/2)/d/a 
^(1/2)-148/105*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)-2/35*cos(d*x+c)^2*sin(d 
*x+c)/d/(a+a*cos(d*x+c))^(1/2)+2/7*cos(d*x+c)^3*sin(d*x+c)/d/(a+a*cos(d*x+ 
c))^(1/2)+62/105*sin(d*x+c)*(a+a*cos(d*x+c))^(1/2)/a/d
 
3.2.22.2 Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.64 \[ \int \frac {\cos ^4(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {\left (105 \sqrt {2} \text {arctanh}\left (\sqrt {\sin ^2\left (\frac {1}{2} (c+d x)\right )}\right )+2 \sqrt {1-\cos (c+d x)} \left (-43+31 \cos (c+d x)-3 \cos ^2(c+d x)+15 \cos ^3(c+d x)\right )\right ) \sin (c+d x)}{105 d \sqrt {1-\cos (c+d x)} \sqrt {a (1+\cos (c+d x))}} \]

input
Integrate[Cos[c + d*x]^4/Sqrt[a + a*Cos[c + d*x]],x]
 
output
((105*Sqrt[2]*ArcTanh[Sqrt[Sin[(c + d*x)/2]^2]] + 2*Sqrt[1 - Cos[c + d*x]] 
*(-43 + 31*Cos[c + d*x] - 3*Cos[c + d*x]^2 + 15*Cos[c + d*x]^3))*Sin[c + d 
*x])/(105*d*Sqrt[1 - Cos[c + d*x]]*Sqrt[a*(1 + Cos[c + d*x])])
 
3.2.22.3 Rubi [A] (verified)

Time = 1.08 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.14, number of steps used = 17, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.696, Rules used = {3042, 3257, 25, 3042, 3462, 27, 3042, 3447, 3042, 3502, 27, 3042, 3230, 3042, 3128, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^4(c+d x)}{\sqrt {a \cos (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^4}{\sqrt {a \sin \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 3257

\(\displaystyle \frac {2 \sin (c+d x) \cos ^3(c+d x)}{7 d \sqrt {a \cos (c+d x)+a}}-\frac {\int -\frac {\cos ^2(c+d x) (6 a-a \cos (c+d x))}{\sqrt {\cos (c+d x) a+a}}dx}{7 a}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {\cos ^2(c+d x) (6 a-a \cos (c+d x))}{\sqrt {\cos (c+d x) a+a}}dx}{7 a}+\frac {2 \sin (c+d x) \cos ^3(c+d x)}{7 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^2 \left (6 a-a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{7 a}+\frac {2 \sin (c+d x) \cos ^3(c+d x)}{7 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3462

\(\displaystyle \frac {\frac {2 \int -\frac {\cos (c+d x) \left (4 a^2-31 a^2 \cos (c+d x)\right )}{2 \sqrt {\cos (c+d x) a+a}}dx}{5 a}-\frac {2 a \sin (c+d x) \cos ^2(c+d x)}{5 d \sqrt {a \cos (c+d x)+a}}}{7 a}+\frac {2 \sin (c+d x) \cos ^3(c+d x)}{7 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {\int \frac {\cos (c+d x) \left (4 a^2-31 a^2 \cos (c+d x)\right )}{\sqrt {\cos (c+d x) a+a}}dx}{5 a}-\frac {2 a \sin (c+d x) \cos ^2(c+d x)}{5 d \sqrt {a \cos (c+d x)+a}}}{7 a}+\frac {2 \sin (c+d x) \cos ^3(c+d x)}{7 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right ) \left (4 a^2-31 a^2 \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{5 a}-\frac {2 a \sin (c+d x) \cos ^2(c+d x)}{5 d \sqrt {a \cos (c+d x)+a}}}{7 a}+\frac {2 \sin (c+d x) \cos ^3(c+d x)}{7 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3447

\(\displaystyle \frac {-\frac {\int \frac {4 a^2 \cos (c+d x)-31 a^2 \cos ^2(c+d x)}{\sqrt {\cos (c+d x) a+a}}dx}{5 a}-\frac {2 a \sin (c+d x) \cos ^2(c+d x)}{5 d \sqrt {a \cos (c+d x)+a}}}{7 a}+\frac {2 \sin (c+d x) \cos ^3(c+d x)}{7 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\int \frac {4 a^2 \sin \left (c+d x+\frac {\pi }{2}\right )-31 a^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{5 a}-\frac {2 a \sin (c+d x) \cos ^2(c+d x)}{5 d \sqrt {a \cos (c+d x)+a}}}{7 a}+\frac {2 \sin (c+d x) \cos ^3(c+d x)}{7 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {-\frac {\frac {2 \int -\frac {31 a^3-74 a^3 \cos (c+d x)}{2 \sqrt {\cos (c+d x) a+a}}dx}{3 a}-\frac {62 a \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}}{5 a}-\frac {2 a \sin (c+d x) \cos ^2(c+d x)}{5 d \sqrt {a \cos (c+d x)+a}}}{7 a}+\frac {2 \sin (c+d x) \cos ^3(c+d x)}{7 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {-\frac {\int \frac {31 a^3-74 a^3 \cos (c+d x)}{\sqrt {\cos (c+d x) a+a}}dx}{3 a}-\frac {62 a \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}}{5 a}-\frac {2 a \sin (c+d x) \cos ^2(c+d x)}{5 d \sqrt {a \cos (c+d x)+a}}}{7 a}+\frac {2 \sin (c+d x) \cos ^3(c+d x)}{7 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {-\frac {\int \frac {31 a^3-74 a^3 \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}-\frac {62 a \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}}{5 a}-\frac {2 a \sin (c+d x) \cos ^2(c+d x)}{5 d \sqrt {a \cos (c+d x)+a}}}{7 a}+\frac {2 \sin (c+d x) \cos ^3(c+d x)}{7 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3230

\(\displaystyle \frac {-\frac {-\frac {105 a^3 \int \frac {1}{\sqrt {\cos (c+d x) a+a}}dx-\frac {148 a^3 \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{3 a}-\frac {62 a \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}}{5 a}-\frac {2 a \sin (c+d x) \cos ^2(c+d x)}{5 d \sqrt {a \cos (c+d x)+a}}}{7 a}+\frac {2 \sin (c+d x) \cos ^3(c+d x)}{7 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {-\frac {105 a^3 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {148 a^3 \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{3 a}-\frac {62 a \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}}{5 a}-\frac {2 a \sin (c+d x) \cos ^2(c+d x)}{5 d \sqrt {a \cos (c+d x)+a}}}{7 a}+\frac {2 \sin (c+d x) \cos ^3(c+d x)}{7 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 3128

\(\displaystyle \frac {-\frac {-\frac {-\frac {210 a^3 \int \frac {1}{2 a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {148 a^3 \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{3 a}-\frac {62 a \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}}{5 a}-\frac {2 a \sin (c+d x) \cos ^2(c+d x)}{5 d \sqrt {a \cos (c+d x)+a}}}{7 a}+\frac {2 \sin (c+d x) \cos ^3(c+d x)}{7 d \sqrt {a \cos (c+d x)+a}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {-\frac {-\frac {\frac {105 \sqrt {2} a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {148 a^3 \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}}{3 a}-\frac {62 a \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}}{5 a}-\frac {2 a \sin (c+d x) \cos ^2(c+d x)}{5 d \sqrt {a \cos (c+d x)+a}}}{7 a}+\frac {2 \sin (c+d x) \cos ^3(c+d x)}{7 d \sqrt {a \cos (c+d x)+a}}\)

input
Int[Cos[c + d*x]^4/Sqrt[a + a*Cos[c + d*x]],x]
 
output
(2*Cos[c + d*x]^3*Sin[c + d*x])/(7*d*Sqrt[a + a*Cos[c + d*x]]) + ((-2*a*Co 
s[c + d*x]^2*Sin[c + d*x])/(5*d*Sqrt[a + a*Cos[c + d*x]]) - ((-62*a*Sqrt[a 
 + a*Cos[c + d*x]]*Sin[c + d*x])/(3*d) - ((105*Sqrt[2]*a^(5/2)*ArcTanh[(Sq 
rt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/d - (148*a^3*Sin[ 
c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]))/(3*a))/(5*a))/(7*a)
 

3.2.22.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3230
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/( 
f*(m + 1))), x] + Simp[(a*d*m + b*c*(m + 1))/(b*(m + 1))   Int[(a + b*Sin[e 
 + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] 
&& EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)]
 

rule 3257
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_. 
) + (f_.)*(x_)]], x_Symbol] :> Simp[-2*d*Cos[e + f*x]*((c + d*Sin[e + f*x]) 
^(n - 1)/(f*(2*n - 1)*Sqrt[a + b*Sin[e + f*x]])), x] - Simp[1/(b*(2*n - 1)) 
   Int[((c + d*Sin[e + f*x])^(n - 2)/Sqrt[a + b*Sin[e + f*x]])*Simp[a*c*d - 
 b*(2*d^2*(n - 1) + c^2*(2*n - 1)) + d*(a*d - b*c*(4*n - 3))*Sin[e + f*x], 
x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 
- b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && IntegerQ[2*n]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3462
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(f*(m + 
n + 1))), x] + Simp[1/(b*(m + n + 1))   Int[(a + b*Sin[e + f*x])^m*(c + d*S 
in[e + f*x])^(n - 1)*Simp[A*b*c*(m + n + 1) + B*(a*c*m + b*d*n) + (A*b*d*(m 
 + n + 1) + B*(a*d*m + b*c*n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
- d^2, 0] && GtQ[n, 0] && (IntegerQ[n] || EqQ[m + 1/2, 0])
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 
3.2.22.4 Maple [A] (verified)

Time = 1.16 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.11

method result size
default \(\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-240 \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+336 \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-280 \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+105 \ln \left (\frac {4 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}+4 a}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}\right ) a \right )}{105 a^{\frac {3}{2}} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(194\)

input
int(cos(d*x+c)^4/(a+cos(d*x+c)*a)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/105*cos(1/2*d*x+1/2*c)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-240*(a*s 
in(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*sin(1/2*d*x+1/2*c)^6+336*(a*sin(1/2*d*x 
+1/2*c)^2)^(1/2)*a^(1/2)*sin(1/2*d*x+1/2*c)^4-280*(a*sin(1/2*d*x+1/2*c)^2) 
^(1/2)*a^(1/2)*sin(1/2*d*x+1/2*c)^2+105*ln(4*(a^(1/2)*(a*sin(1/2*d*x+1/2*c 
)^2)^(1/2)+a)/cos(1/2*d*x+1/2*c))*a)/a^(3/2)/sin(1/2*d*x+1/2*c)/(a*cos(1/2 
*d*x+1/2*c)^2)^(1/2)/d
 
3.2.22.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 153, normalized size of antiderivative = 0.88 \[ \int \frac {\cos ^4(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {4 \, {\left (15 \, \cos \left (d x + c\right )^{3} - 3 \, \cos \left (d x + c\right )^{2} + 31 \, \cos \left (d x + c\right ) - 43\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right ) + \frac {105 \, \sqrt {2} {\left (a \cos \left (d x + c\right ) + a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - \frac {2 \, \sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}}}{210 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

input
integrate(cos(d*x+c)^4/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")
 
output
1/210*(4*(15*cos(d*x + c)^3 - 3*cos(d*x + c)^2 + 31*cos(d*x + c) - 43)*sqr 
t(a*cos(d*x + c) + a)*sin(d*x + c) + 105*sqrt(2)*(a*cos(d*x + c) + a)*log( 
-(cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(a) 
 - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/sqrt(a))/(a* 
d*cos(d*x + c) + a*d)
 
3.2.22.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**4/(a+a*cos(d*x+c))**(1/2),x)
 
output
Timed out
 
3.2.22.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 696204 vs. \(2 (149) = 298\).

Time = 17.57 (sec) , antiderivative size = 696204, normalized size of antiderivative = 4001.17 \[ \int \frac {\cos ^4(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\text {Too large to display} \]

input
integrate(cos(d*x+c)^4/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")
 
output
-1/5040*(180*(cos(5/2*d*x + 5/2*c)^2*sin(d*x + c) + 2*cos(5/2*d*x + 5/2*c) 
*cos(3/2*d*x + 3/2*c)*sin(d*x + c) + cos(3/2*d*x + 3/2*c)^2*sin(d*x + c) + 
 sin(5/2*d*x + 5/2*c)^2*sin(d*x + c) + 2*sin(5/2*d*x + 5/2*c)*sin(3/2*d*x 
+ 3/2*c)*sin(d*x + c) + sin(3/2*d*x + 3/2*c)^2*sin(d*x + c))*cos(9/2*d*x + 
 9/2*c)^3 - 180*((cos(d*x + c) + 1)*cos(5/2*d*x + 5/2*c)^2 + 2*(cos(d*x + 
c) + 1)*cos(5/2*d*x + 5/2*c)*cos(3/2*d*x + 3/2*c) + (cos(d*x + c) + 1)*cos 
(3/2*d*x + 3/2*c)^2 + (cos(d*x + c) + 1)*sin(5/2*d*x + 5/2*c)^2 + 2*(cos(d 
*x + c) + 1)*sin(5/2*d*x + 5/2*c)*sin(3/2*d*x + 3/2*c) + (cos(d*x + c) + 1 
)*sin(3/2*d*x + 3/2*c)^2)*sin(9/2*d*x + 9/2*c)^3 - 40*((cos(d*x + c)^2 + s 
in(d*x + c)^2 + 2*cos(d*x + c) + 1)*cos(5/2*d*x + 5/2*c)^2 + 2*(cos(d*x + 
c)^2 + sin(d*x + c)^2 + 2*cos(d*x + c) + 1)*cos(5/2*d*x + 5/2*c)*cos(3/2*d 
*x + 3/2*c) + (cos(d*x + c)^2 + sin(d*x + c)^2 + 2*cos(d*x + c) + 1)*cos(3 
/2*d*x + 3/2*c)^2 + (cos(d*x + c)^2 + sin(d*x + c)^2 + 2*cos(d*x + c) + 1) 
*sin(5/2*d*x + 5/2*c)^2 + 2*(cos(d*x + c)^2 + sin(d*x + c)^2 + 2*cos(d*x + 
 c) + 1)*sin(5/2*d*x + 5/2*c)*sin(3/2*d*x + 3/2*c) + (cos(d*x + c)^2 + sin 
(d*x + c)^2 + 2*cos(d*x + c) + 1)*sin(3/2*d*x + 3/2*c)^2)*sin(7/2*d*x + 7/ 
2*c)^3 - 2*(840*(cos(d*x + c) + 1)*sin(5/2*d*x + 5/2*c)^3 + 336*(cos(d*x + 
 c)^2 + sin(d*x + c)^2 + 2*cos(d*x + c) + 1)*sin(3/2*d*x + 3/2*c)^3 - 840* 
cos(5/2*d*x + 5/2*c)^3*sin(d*x + c) + 21*(45*(log(cos(1/2*d*x + 1/2*c)^2 + 
 sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x...
 
3.2.22.8 Giac [A] (verification not implemented)

Time = 0.58 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.81 \[ \int \frac {\cos ^4(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\frac {\frac {105 \, \sqrt {2} \log \left (\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {105 \, \sqrt {2} \log \left (-\sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{\sqrt {a} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {16 \, \sqrt {2} {\left (30 \, a^{\frac {13}{2}} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 42 \, a^{\frac {13}{2}} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 35 \, a^{\frac {13}{2}} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3}\right )}}{a^{7} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{210 \, d} \]

input
integrate(cos(d*x+c)^4/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")
 
output
1/210*(105*sqrt(2)*log(sin(1/2*d*x + 1/2*c) + 1)/(sqrt(a)*sgn(cos(1/2*d*x 
+ 1/2*c))) - 105*sqrt(2)*log(-sin(1/2*d*x + 1/2*c) + 1)/(sqrt(a)*sgn(cos(1 
/2*d*x + 1/2*c))) - 16*sqrt(2)*(30*a^(13/2)*sin(1/2*d*x + 1/2*c)^7 - 42*a^ 
(13/2)*sin(1/2*d*x + 1/2*c)^5 + 35*a^(13/2)*sin(1/2*d*x + 1/2*c)^3)/(a^7*s 
gn(cos(1/2*d*x + 1/2*c))))/d
 
3.2.22.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x)}{\sqrt {a+a \cos (c+d x)}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^4}{\sqrt {a+a\,\cos \left (c+d\,x\right )}} \,d x \]

input
int(cos(c + d*x)^4/(a + a*cos(c + d*x))^(1/2),x)
 
output
int(cos(c + d*x)^4/(a + a*cos(c + d*x))^(1/2), x)